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Vanadium-dependent haloperoxidases (VHPOSs) are a novel class 00 Ha0y H,0, HY o
of peroxidases that utilize a vanadate cofdctoperform the two- o-[ % '0_
electron oxidation of halidésand organic sulfide3In contrast to K o,;??;.”[k'

heme peroxidases, which oxidize halides through a Compound "o
I-type intermediate (Fe)O species), there is no evidence that u* H
the vanadate cofactor (V{90 species) changes oxidation state

during catalysis. Biochemical studies have shown that peroxide is

necessary to oxidize halides with a catalytically relevagy pf
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a key role in understanding the struct@n@echanism of peroxide )
coordinatiorf and substrate oxidation for VHPO®ur group has

/
HOH
explored the reactivity of tripodal amine complexes of oxovana- ’{
0
\Me
H+
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dium(5+) with peroxide to provide insight into the mechanism of I

this system and to develop biomimetic oxidation catal§gts.To

date, K[V(5+)O(O,)HheidaJe has the highest reported rate with ve

respect to bromid€ and thioethe oxidation of any vanadium com- HO |\0 }
plex. Reactivity studies with tripodal amine compounds, including . HO -/
[V(5+)O(0y)Hheidal, have shown that addition of 1.0 equiv of a ach 39 kealfmol

strong acid is necessary for this activity. Protonation plays a two- Figure 1. Derived mechanism for thioether oxidation based on D&Td
fold role in the activation of the complex: (1) protonation labilizes ~experimental studiés°of [V(5+)O(O;)Hheida] . Highlighted oxygens (red,
an oxo bond, assisting the coordination of hydrogen perdiéate] bold) indicate possible sites of protonation.

(2) protonation activates the peroxide compféor oxidation of

a substrate molecule.

Under acidic conditions in nonaqueous solution, the peroxo
oxovanadium(53-) complex is capable of mimicking the bromide
and thioether oxidation abilities of VHPOs, including the selective
conversion of thioethers to sulfoxides without overoxidation to the

states for substrate oxidation could only be located for a hydrop-
eroxo moiety. These results imply that protonation of the peroxo
moiety is energetically favored and required for substrate oxidation,
but without spectroscopic confirmation, we cannot definitively

exclude the possibility that protonation of the oxo group plays a

sulfone. Experimental studies have shown that the proton interacts'©!€ in catalysis. Herein, we present X-ray absorption near-edge
with the vanadium complex, causing a red shift of the charge- spectroscopy (XANES) data that provide spectroscopic evidence

transfer ban® assigned to the peroxo moiety and the upfield shift that protonation of the oxo atom in the intermediate does not occur
of the 51V NMR signal’e under catalytic conditions.

These studies led to the mechanistic proposal for substrate XANES provides a sensitive probe of the electronic structure of
oxidation by V(5+)O(O,) complexes depicted in Figure 1. Unfor- ~ transition metal complexes. lThe pre-edge feature, commonly
tunately, the data available do not allow a specific assignment of 2SSigned as a 1s3d transitior’ can be used as a direct probe of
the site of protonation nor the transition-state geometry. To shed electronic structure. This orbitally forbidden transition increases
light on these issues, we and others have performed a variety of!" INte€nsity with the degree of metal 4p character that is hybridized
theoretical studies using DEEnd QM/MM: for both the enzyme with the 3d molecular orbitals. Previous work has shown metal
and functional models. These studies showed that both the enzymePXC complexes to have an abnormally large pre-edge feétére.
and our functional model proceed through a2 $ype transition the degree of ¢p hybridization is dependent on the geometry e}nd
state, where the substrate is acting as the nucleophile attacking thdhe donor set, we explored a well-defined set of vanadium
coordinated peroxo moiety. The protonated peroxo moiety has an coordination complexes to establish a trend in the pre-edge area
activation energy that is 9 kcal/mol lower than that of the relative to the number of vanadiunoxo bonds. This correlation

corresponding unprotonated species. A similar change was observed!/OWs Us to examine if a peroxdydroxovanadium(¥) species,
for halide oxidation in both the enzyme and functional model [V(5+)(OH)O(Hheida)], is the catalytically relevant form of our

systems. DFT studies on the functional model, f(6(O,)Heida], functional model.
demonstrated that, of the three most basic sites (oxo, peroxo, or X"fay absorption data were collected at SSRL BL9-3, the spectra

carboxylate), protonation of the peroxo moiety was energetically Were normalized? and the pre-edge area was fit using a pseudo-
favored, with protonation of the oxo or the carboxylate oxygens Y09t method. A comparison of VE4)O(SALEN) and V(4F)Cl-

being 2.9 and 11 kcal/mol higher in energy, respecti#dlsansition (SALEN)* shows a significant decrease in the pre-edge intensity
for the dichloro species (Figure 2, inset). This is consistent with

* Department of Chemistry. previous studies which demonstrated the pre-edge intensity scaled
* Biophysics Research Division. with oxo bonding within comparable complexes (consistent geom-

2712 = J. AM. CHEM. SOC. 2008, 130, 2712—2713 10.1021/ja077404c CCC: $40.75 © 2008 American Chemical Society
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Figure 2. XANES pre-edge spectra of K[VO@Hheida] (red, solid),
H[VO(O2)Hheida] (blue, dotted), N#ivO,Hheida)] (orange, dashed), VO-
(SALEN) (black, inset), and VG({SALEN) (purple, inset).

etry and donor sef? The contribution of the peroxo donor to the
pre-edge intensity was examined using ¥{®(Hheida), NH-
[V(5+)O,(Hheida)], and K[V(5+)O(0,)Hheida]. These complexes
contain a mono-oxo, dioxo, and oxperoxo vanadium species,
respectively. The dioxo complex, N¥(5+)O,(Hheida)], showed

of asymmetric oxidation¥, with the asymmetric oxidation of
thioether$® as a notable example. Chiral sulfoxides are synthetically
useful, and pharmaceutically relevant functional grétipsquire
careful control of the oxidation conditions to prevent over-oxidation
to the sulfone. The results contained herein lend a deeper
understanding to the mechanism of thioether oxidation and allows
for rational design of catalysts capable of this important synthetic
transformation.

DFT results have shown that VHPOs have a transition-state
geometry nearly identical to that found for our mod&i$On the
basis of the similarities in reactivity (proton dependence on
reactivity, transition-state geometry, and trends in the barrier to
activation for substrate oxidation related to peroxo protonation),
this work lends support to the role of a hydroperoxo intermediate
in the catalytic cycle for VHPOs.
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